EE 435

Lecture 6:

- Signal Swing
- Measurement/Simulation of High Gain Circuits
- Offset Voltage
- High Gain Single-Stage Op Amps

Operation of Op Amp – A different

Small signal differential half-circuit

If the input impedance to the counterpart circuit is infinite and the quiescent values of the left and right drain voltages are the same, connecting the bias port of the quarter circuit to V_0^- instead of to V_{BB} will cause the signal current in the right counterpart circuit to be equal to that in the left counterpart circuit

This will double the signal current steered to V_o^+ and thus double the voltage gain !

This will also eliminate the need for a ₂ CMFB circuit !

Basic Current Mirror

$$|_{IN} = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_T)^2$$

$$I_{OUT} = \frac{\mu C_{OX} W_2}{2L_2} (V_{GS2} - V_T)^2$$
$$\frac{I_{OUT}}{I_{IN}} = \frac{W_2}{W_1} \frac{L_1}{L_2}$$

n-channel

More Advanced Current Mirrors

USPTO search on Feb 2, 2021

612 patents with "current and mirror" in title since 1976

26 patents with "current and mirror" in title from 2018 and 2020 searches Number of patents/decade is about at the 3-decade average

Is there still an opportunity to contribute to the current mirror field?

Signal Swing

To keep M₁ out of Triode Region

$$\mathcal{L}_{1}: V_{OUT} > V_{iN} - V_{Tn}$$

To keep M_1 out of Cutoff

$$\mathcal{L}_2: V_{iN} > V_{Tn}$$

To keep M₂ out of Triode Region

$$\mathcal{L}_3: |V_{OUT} - V_{DD}| > |V_{XX} - V_{DD} - V_{Tp}|$$

 $\bigvee_{XX} - V_{Tp} > V_{OUT}$

Review from last lecture: Signal Swing

For this circuit, high gain and large output signal swing for small V_{EB1}

Output Impedance Calculation

- g_o is a critical parameter that appears in the smallsignal models of high-gain circuits
- With a square-law Spice Level 2 or Level 3 model of the transistor,

$$I_{D} = \frac{\mu C_{OX} W}{2L} \left(V_{GS} - V_{TH} \right)^{2} \left(1 + \lambda V_{DS} \right)$$
$$g_{0} = \frac{\partial I_{D}}{\partial V_{DS}} \bigg|_{Q-PT} = \left(\frac{\mu C_{OX} W}{2L} \left(V_{GS} - V_{TH} \right)^{2} \lambda \right) \bigg|_{Q-PT} \simeq \lambda I_{DQ}$$

• But λ is not a parameter in a BSIM model and λ is often not even given in measured data such as that from MOSIS

• And
$$g_0 = \frac{\partial I_D}{\partial V_{DS}} \Big|_{Q-PT}$$
 depends somewhat on L

Output Impedance Calculation

How to obtain g₀

- Simulate single-transistor circuit with dimensions and operating point close to that of device used from $g_0 = \frac{\partial I_D}{\partial V_{DS}} \Big|_{O PT}$
- If desired, define $\lambda \simeq \frac{\frac{\partial I_D}{\partial V_{DS}}\Big|_{Q-PT}}{I_{DQ}}$ though actually g_0 is what is needed
- Make a table of g_0 (or λ) for different L values in a given process

What type of signal swing is needed ?

Narrow V_{OUT} and wide V_{iC} range

Narrow V_{iC} and wide V_{OUT} range

12

What type of signal swing is needed ?

Wide V_{iC} and V_{OUT} range

Expected for catalog parts and overall I/O in many applications

Narrow V_{OUT} and wide V_{iC} range

Acceptable when followed by high-gain stage

Narrow V_{iC} and wide V_{OUT} range

Acceptable when ViC is fixed

Narrow V_{iC} and V_{OUT} range

Acceptable when V_{iC} fixed and 13 followed by high-gain stage

- Signal swings are Important Performance Parameters !!
- Signal swing parameters are naturally in practical parameter domain
- Since $V_{EB3} = V_{EB4}$, small V_{EB3} improves both output swing and V_{iC} swing

Design space for single-stage 5T op amp

How many independent design variables and how many constraints does this circuit have (assuming symmetry)?

Assume $V_{\text{SS}},\,V_{\text{DD}},\,\text{and}\,\,C_{\text{L}}$ fixed

Small-signal domain? $\{g_{m1}, g_{m3}, g_{m5}, g_{01}, g_{03}, g_{05}\}$ (not independent)

Natural parameter domain?

 $\{W_3/L_3, W_1/L_1, W_5/L_5, I_T\}$

No constraints A practical parameter domain?

 $\{ V_{EB1} V_{EB3} V_{EB5} P \}$

No constraints

Design space for single-stage 5T op amp

Performance Parameters in Practical Parameter Domain { $V_{EB1} V_{EB3} V_{EB5} P$ }:

$$\begin{split} A_{_{0}} &= \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{2}{V_{_{EB1}}}\right) \\ GB &= \left(\frac{P}{V_{DD}C_{L}}\right) \left[\frac{1}{V_{EB1}}\right] \\ SR &= \frac{P}{(V_{DD} - V_{SS})C_{L}} \\ V_{OUT} &< V_{DD} - \left|V_{EB3}\right| \\ V_{OUT} &> V_{ic} - V_{T2} \\ V_{ic} &< V_{DD} + V_{T1} - \left|V_{T3}\right| - \left|V_{EB3}\right| \\ V_{ic} &> V_{T1} + V_{EB1} + V_{EB5} + V_{SS} \end{split}$$

Simple Expressions (7) in Practical Parameter Domain 20

 \mathbf{V}

Design example for single-stage 5T op amp

Performance Parameters in Practical Parameter Domain { $V_{EB1} V_{EB3} V_{EB5} P$ }:

Assume design to meet A_0 , GB and signal swing specs.

- Select Parameter Domain (will use practical parameter domain) { V_{EB1} V_{EB3} V_{EB5} P}
- 2. Pick V_{EB1} to meet gain requirement) { $V_{EB3} V_{EB3} V_{EB5} P$ }

 $V_{EB1} = \left[\frac{1}{\lambda_1 + \lambda_3}\right] \left(\frac{2}{A_0}\right)$

- 3. Pick P to meet GB requirement $\{ \bigvee_{EB3} V_{EB3} \bigvee_{EB5} \}$
- 4. Pick V_{EB3} and V_{EB5} to meet signal swing requirements
- 5. Map back from the Practical Parameter Domain to the Natural Parameter domain (next page)

Design example for single-stage 5T op amp

Performance Parameters in Practical Parameter Domain { $V_{EB1} V_{EB3} V_{EB5} P$ }:

Mapping from Practical Parameter Domain { $V_{EB1} V_{EB3} V_{EB5} P$ } to Natural Parameter Domain { $W_1/L_1 W_3/L_3 W_5/L_5 I_T$ }

 $\begin{array}{l} \mbox{From expression} \quad I_{Dk} = \frac{\mu_{k}C_{ox}W_{k}}{2L_{k}}V_{EBk}^{2} \quad \mbox{it follows that} \\ \\ \frac{W_{1}}{L_{1}} = \frac{1}{\mu_{n}C_{OX}V_{EB1}^{2}} \frac{P}{V_{DD} - V_{SS}} \\ \\ \frac{W_{3}}{L_{3}} = \frac{1}{\mu_{p}C_{OX}V_{EB3}^{2}} \frac{P}{V_{DD} - V_{SS}} \\ \\ \\ \frac{W_{5}}{L_{5}} = \frac{2}{\mu_{n}C_{OX}V_{EB5}^{2}} \frac{P}{V_{DD} - V_{SS}} \\ \\ \\ I_{T} = \frac{P}{V_{DD} - V_{SS}} \quad \mbox{or} \quad V_{B2} = V_{EB5} + V_{ss} + V_{THn} \end{array}$

Design space for single-stage 5T op amp

Complicated Expressions (7) in Practical Parameter Domain₂₃

- Measurement of A_V is challenging
 - Because it is so large
 - Even harder as A_{V0} becomes larger
 - Offset voltage causes a problem
 - Embed in Feedback Network to Stabilize Operating Point
 - Stability must be managed
 - Use time varying input to distinguish signal information from offset
 - Must be well below first pole frequency to measure $A_{\nu0}$
 - Measurement challenges often parallel simulation challenges
- Measurement of GB by indirect closed loop BW measurement is easy
- Measurement of R₀ is challenging
 - Often very small
 - Often challenging to avoid having measurement circuit cause output current to exceed I_{OMAX}

Consider two inputs, $V_{\rm X1}$ and $V_{\rm X2}$

$$V_{21} = -A(\theta V_{31} - V_{OS})$$
$$V_{22} = -A(\theta V_{32} - V_{OS})$$
$$V_{31}(G_1 + G_2 + G_4) = G_1 V_{X1} + G_2 V_{21}$$
$$V_{32}(G_1 + G_2 + G_4) = G_1 V_{X2} + G_2 V_{22}$$

$$A = \frac{1}{\theta} \frac{V_{22} - V_{21}}{V_{31} - V_{32}}$$
$$V_{OS} = \theta \frac{V_{21}V_{32} - V_{31}V_{22}}{V_{21} - V_{22}}$$

Not needed

Consider two inputs, V_{X1} and V_{X2}

$$\mathsf{A} = \left(1 + \frac{\mathsf{R}_3}{\mathsf{R}_4}\right) \frac{\mathsf{V}_{22} - \mathsf{V}_{21}}{\mathsf{V}_{31} - \mathsf{V}_{32}}$$

Can also measure V_{OS} with this circuit

Can add gain stage if A is very large

Consider two inputs, V_{X1} and V_{X2}

- Must compensate this circuit and compensation may be a bit complicated
- Compensation beyond scope at this stage in EE 435

Potential Compensation Structures

Offset Voltage

- Systematic Offset Voltage
- Random Offset Voltage

Offset Voltage

- Systematic Offset Voltage
- Random Offset Voltage

Definition: The output offset voltage is the difference between the desired output and the actual output when V_{id} =0 and V_{ic} is the quiescent common-mode input voltage.

VOUTOFF = VOUT - VOUTDES

Note: V_{OUTOFF} is dependent upon V_{ICQ} although this dependence is usually quite weak and often not specified

Definition: The input-referred offset voltage is the differential dc input voltage that must be applied to obtain the desired output when V_{ic} is the quiescent common-mode input voltage.

Note: V_{OFF} is usually related to the output offset voltage by the expression

$$V_{OFF} = \frac{V_{OUTOFF}}{A_D}$$

Note: V_{OFF} is dependent upon V_{ICQ} although this dependence is usually quite weak and often not specified

When differential input op amps are biased with symmetric supply voltages, it is generally assumed that the desired quiescent input voltage Is 0V and the desired quiescent output voltage is 0V so V_{OFF} is the differential Input voltage needed to make V_{OUT} =0V.

The input offset voltage is comprised of two parts, a systematic component and a random component

 $V_{OFF} = V_{OFFSYS} + V_{OSR}$

After fabrication there is no distinction made between V_{OFFSYS} and V_{OSR} and simply V_{OFF} is of concern

 V_{OSR} is determined entirely by random variations in component values from their ideal value and will only be seen in a simulation if deviations are intentionally introduced (Monte Carlo Analysis if often used for predicting V_{OSR})

It is expected that V_{OFFSYS} should be small (much smaller than V_{OSR}) and it is the designer's responsibility to make this small

 $V_{OFF} = V_{OFFSYS} + V_{OSR}$

It is not necessary to make V_{OFFSYS} =0 although this can and is often done by making a minor tweak of matching critical parameters after the design of the op amp is almost complete

 V_{OFFSYS} can also be set to 0 by using a degree of freedom of the amplifier design variables but this is generally an unwise use of degrees of freedom (although some textbooks including Martin and Johns in Sec 5.1 do this!)

(If no missmatch is introduced, will be seeing only effects of systematic offset)

By symmetry, to force $V_{OUT} = 0$, it is necessary to have $V_{D3}=0$

- Making V_{D3}=0 sets |V_{EB3} |= V_{DD} + V_{Tp} and results in the use of one degree of freedom!
- Making V_{EB3} so large will severely limit the voltage swing at V_{OUT}
- This shows why it is not wise to use a degree of freedom to make desired output voltage 0

Can sweep a voltage in simulator at gate of M_1 to make $V_{OUT}=V_{OUT}$ DESIRED

This is the systematic offset voltage

Can simply add the systematic offset voltage to input throughout rest of the design phase and then remove after design is complete or tweak at end of design to eliminate systematic offset. ³⁹

Usually V_{OFF} will change if changes in any design variables are made so re-simulation will be needed to get the correct value of V_{OFF}

If V_{OFF} is not included, ac simulation of open-loop amplifier will usually not give desired results because small-signal models will be developed in simulator at incorrect operating point (often even in incorrect region of operation)

Alternative is to do ac simulations by embedding op amp into a FB configuration that will inherently compensate for offset voltage but issue of compensation must be addressed for amplifiers with two or more poles

Stay Safe and Stay Healthy !

End of Lecture 6